3-manifolds Admitting Toric Integrable Geodesic Flows
نویسنده
چکیده
A toric integrable geodesic flow on a manifold M is a completely integrable geodesic flow such that the integrals generate a homogeneous torus action on the punctured cotangent bundle T ∗M \ M . A toric integrable manifold is a manifold which has a toric integrable geodesic flow. Toric integrable manifolds can be characterized as those whose cosphere bundle (the sphere bundle in the cotangent bundle) have the structure of a contact toric manifold. In this paper, we identify all 3-dimensional toric integrable manifolds using a classification of contact toric manifolds and a method of detecting when a manifold is a cosphere bundle. There turns out to be only three diffeomorphism classes: the 3-sphere, the 3-torus and quotients of the 3-sphere by finite cyclic groups. All of these manifolds then possess toric integrable geodesic flows.
منابع مشابه
Toric Integrable Geodesic Flows
By studying completely integrable torus actions on contact manifolds we prove a conjecture of Toth and Zelditch that toric integrable geodesic flows on tori must have flat metrics.
متن کاملToric Integrable Metrics on Tori Are Flat
By studying completely integrable torus actions on contact manifolds we prove a conjecture of Toth and Zelditch that toric integrable geodesic flows on tori must have flat metrics.
متن کاملGeodesic flows and contact toric manifolds
Forward These notes are based on five 1.5 hour lectures on torus actions on contact mani-folds delivered at the summer school on Symplectic Geometry of Integrable Hamil-tonian Systems at Centre de Recerca Matemàtica in Barcelona in July 2001. Naturally the notes contain more material that could have been delivered in 7.5 hours. I am grateful to Carlos Curràs-Bosch and Eva Miranda, the organizer...
متن کاملRiemannian Manifolds with Integrable Geodesic Flows
In this paper we will survey some recent results on the Hamiltonian dynamics of the geodesic flow of a Riemannian manifold. More specifically, we are interested in those manifolds which admit a Riemannian metric for which the geodesic flow is integrable. In Section 2, we introduce the necessary topics from symplectic geometry and Hamiltonian dynamics (and, in particular, we defined the terms ge...
متن کاملar X iv : m at h - ph / 0 30 70 15 v 1 8 J ul 2 00 3 Integrable geodesic flows on Riemannian manifolds : Construction and Obstructions ∗ Alexey
This paper is a review of recent and classical results on integrable geodesic flows on Riemannian manifolds and topological obstructions to integrability. We also discuss some open problems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004